

Certificate of Analysis

Customer Information

Testing Facility

Client: Attention: TestMyKratom.org

tmk@testmykratom.org

Address:

Kratom.org

18117 Biscayne Blvd, Suite #4220

Miami, FL 33160

Cora Science, LLC

Address

8000 Anderson Square, STE 113
Austin. Texas 70757

Austin, Texas 78757

Contact:

info@corascience.com

(512) 856-5007

Sample Image(s)

TestMyKrato

Sample Information

Name: Kratom Distro 86% Tangerine 7-OH powder

Lot Number:

Description: Powdered botanical extract

Good **Condition:** Job ID: ISO04393 **Sample ID:** 111948 Received: 08JUL2025 **Completed:** 17JUL2025 **Issued:** 17JUL2025

Test Results	TestM	lyKratom	org	Test	MyKrator	n.or
Mitragyna Alkaloids (UHPLC-DA		Method Code: T102		Tested: 14JUL2025 2303		
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES	
Mitragynine	Report Results	0.886	w/w%	0.048	N/A	
7-Hydroxymitragynine	Report Results	74.1	w/w%	0.048	N/A	
Mitragynine Pseudoindoxyl	Report Results	1.04	w/w%	0.048	N/A	
Mitraciliatine	Report Results	<loq< td=""><td>w/w%</td><td>0.048</td><td>N/A</td><td></td></loq<>	w/w%	0.048	N/A	
Speciociliatine TeS	Report Results	<loq< td=""><td>Te5 w/w%</td><td>0.048</td><td>N/A</td><td>Te</td></loq<>	Te5 w/w%	0.048	N/A	Te
Speciogynine	Report Results	<loq< td=""><td>w/w%</td><td>0.048</td><td>N/A</td><td></td></loq<>	w/w%	0.048	N/A	
Paynantheine	Report Results	<loq< td=""><td>w/w%</td><td>0.048</td><td>N/A</td><td></td></loq<>	w/w%	0.048	N/A	
Coryantheidine	Report Results	0.128	w/w%	0.048	N/A	
Corynoxine	Report Results	<loq< td=""><td>w/w%</td><td>0.048</td><td>N/A</td><td></td></loq<>	w/w%	0.048	N/A	
Isorhynchophylline	Report Results	<loq< td=""><td>w/w%</td><td>0.048</td><td>N/A</td><td></td></loq<>	w/w%	0.048	N/A	
Mitraphylline Vratom.org	Report Results	<loq< td=""><td>w/w%</td><td>0.048</td><td>N/A</td><td>n.01</td></loq<>	w/w%	0.048	N/A	n.01
Total Mitragyna Alkaloids	Report Results	76.2	w/w%	0.048 st	N/A	

Residual Solvents: Class	s I (GC-MS) Method	Code: T201		Tested: 17J	UL2025 1019	9
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES	
1,1-Dichloroethene	NMT 8	<loq< td=""><td>ug/g</td><td>0.40</td><td>PASS</td><td></td></loq<>	ug/g	0.40	PASS	
1,1,1-Trichloroethane	NMT 1500	<loq< td=""><td>ug/g</td><td>75</td><td>PASS</td><td></td></loq<>	ug/g	75	PASS	
Tetrachloromethane	NMT 4	<loq< td=""><td>ug/g</td><td>ato0.20018</td><td>PASS</td><td></td></loq<>	ug/g	ato0.20018	PASS	
Benzene	Test NMT 2	<loq< td=""><td>ug/g</td><td>0.10</td><td>PASS</td><td>T</td></loq<>	ug/g	0.10	PASS	T
1,2-Dichloroethane	NMT 5	<loq< td=""><td>ug/g</td><td>0.25</td><td>PASS</td><td></td></loq<>	ug/g	0.25	PASS	

Residual Solvents: Class II (GC-MS) Method Code: T201 Tested: 17JUL2025 | 1019

w	ork Order: ISO04393 Sample: I11948	Received: 08JUL2	2025 Issued: 17JUL20	25		Revision: 00 Pag	ge 2
	PARAMETER S	SPECIFICATION	RESULT	UNIT	LOQ	NOTES	
	Methanol	NMT 3000	107	ug/g	75	PASS	
	Acetonitrile	NMT 410	<loq< td=""><td>ug/g</td><td>41</td><td>PASS</td><td></td></loq<>	ug/g	41	PASS	
	Dichloromethane	NMT 600	<loq< td=""><td>ug/g</td><td>15</td><td>PASS</td><td></td></loq<>	ug/g	15	PASS	
	1,2-Dichloroethene, (E)	NMT 1870	<loq< td=""><td>org ug/g</td><td>47</td><td>PASS</td><td>1.org</td></loq<>	org ug/g	47	PASS	1.org
	1,2-Dichloroethene, (Z)	NMT 1870 Test	<loq< td=""><td>ug/g</td><td>47Test1</td><td>PASS</td><td></td></loq<>	ug/g	47Test1	PASS	
	Tetrahydrofuran	NMT 720	<loq< td=""><td>ug/g</td><td>18</td><td>PASS</td><td></td></loq<>	ug/g	18	PASS	
	Cyclohexane	NMT 3880	<loq< td=""><td>ug/g</td><td>97</td><td>PASS</td><td></td></loq<>	ug/g	97	PASS	
	Methylcyclohexane	NMT 1180	<loq< td=""><td>ug/g</td><td>30</td><td>PASS</td><td></td></loq<>	ug/g	30	PASS	
	1,4-Dioxane	NMT 380	<loq< td=""><td>ug/g</td><td>38</td><td>PASS</td><td></td></loq<>	ug/g	38	PASS	
	Toluene	NMT 890	<loq< td=""><td>ug/g</td><td>22</td><td>PASS</td><td></td></loq<>	ug/g	22	PASS	
(ot	Chlorobenzene	NMT 360	<loq< td=""><td>ug/g</td><td>tor9.00rg</td><td>PASS</td><td></td></loq<>	ug/g	tor9.00rg	PASS	
Krau	Ethylbenzene	NMT 2170	<loq< td=""><td>Tes ug/g/Kr</td><td>54</td><td>PASS</td><td>Test</td></loq<>	Tes ug/g/Kr	54	PASS	Test
	o/p-Xylene	NMT 2170	<loq< td=""><td>ug/g</td><td>54</td><td>PASS</td><td>100</td></loq<>	ug/g	54	PASS	100
	m-Xylene	NMT 2170	<loq< td=""><td>ug/g</td><td>54</td><td>PASS</td><td></td></loq<>	ug/g	54	PASS	
	Isopropylbenzene	NMT 70	<loq< td=""><td>ug/g</td><td>1.8</td><td>PASS</td><td></td></loq<>	ug/g	1.8	PASS	
	Hexane	NMT 290	<loq< td=""><td>ug/g</td><td>7.3</td><td>PASS</td><td></td></loq<>	ug/g	7.3	PASS	
	Nitromethane	NMT 50	<loq< td=""><td>ug/g</td><td>1.3</td><td>PASS</td><td></td></loq<>	ug/g	1.3	PASS	
	Chloroform	NMT 60	<loq< td=""><td>org ug/g</td><td>1.5</td><td>PASS</td><td>org</td></loq<>	org ug/g	1.5	PASS	org
	1,2-Dimethoxyethane	NMT 100	<loq <loq< td=""><td>ug/g</td><td>2.5</td><td>PASS PASS</td><td>1.0</td></loq<></loq 	ug/g	2.5	PASS PASS	1.0
	Trichloroethene	NMT 100 NMT 80	<loq< td=""><td>ug/g</td><td>2.5 2.0Test1</td><td>PASS</td><td></td></loq<>	ug/g	2.5 2.0Test1	PASS	
	Pyridine	NMT 200	<loq< td=""><td>ug/g</td><td>5.0</td><td>PASS</td><td></td></loq<>	ug/g	5.0	PASS	
	2-Hexanone	NMT 50	<loq< td=""><td>ug/g</td><td>5.0</td><td>PASS</td><td></td></loq<>	ug/g	5.0	PASS	
	Tetralin	NMT 100	<loq< td=""><td>ug/g</td><td>2.5</td><td>PASS</td><td></td></loq<>	ug/g	2.5	PASS	
4							

Residual Solvents: Cla	ass III (GC-MS)	Method Code: T201	L	Tested	: 17JUL2025 1	.019
ratom.OT PARAMETER	SPECIFICATION	ON RESULT	UNIT	Krato Loo	NOTES	
Pentane	NMT 5000	<loq< td=""><td>Tesug/g</td><td>125</td><td>PASS</td><td>Tes</td></loq<>	Tesug/g	125	PASS	Tes
Ethanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Diethyl Ether	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Acetone	NMT 5000	316	ug/g	125	PASS	
Ethyl Formate	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Isopropanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Methyl Acetate	om.org NMT 5000	<loq< td=""><td>om.org</td><td>125</td><td>PASS</td><td>om.org</td></loq<>	om.org	125	PASS	om.org
Methyl tert-Butyl Ether	NMT 5000	TestMY <loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
1-Propanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
2-Butanone	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Ethyl Acetate	NMT 5000	3,057	ug/g	125	PASS	
2-Butanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
2-Methyl-1-Propanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Isopropyl Acetate	NMT 5000	n.org <loq< td=""><td>ug/g</td><td>125)</td><td>g PASS</td><td></td></loq<>	ug/g	125)	g PASS	
Heptane	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td>Tes</td></loq<>	ug/g	125	PASS	Tes
1-Butanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td>100</td></loq<>	ug/g	125	PASS	100
Propyl Acetate	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
4-Methyl-2-Pentanone	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Isoamyl Alcohol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	
Isobutyl Acetate	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td><td></td></loq<>	ug/g	125	PASS	

Work Order: ISO04393 Sample: I11948	Received: 08JUL	.2025 Issued: 17JUL20	Revision: 00 Page 3		
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES
1-Pentanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Butyl Acetate	NMT 5000	455	ug/g	125	PASS
Anisole	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Dimethylsulfoxide	NMT 5000	<loq< td=""><td>org_{ug/g}</td><td>125</td><td>PASS OM. OF S</td></loq<>	org _{ug/g}	125	PASS OM. OF S

Additional Report Notes

N/A

Revision History

rev 00 - Initial release.

rev 01 - Added T201 result.

Abbreviations

ID: identification, N/A: not applicable, LOQ: limit of quantitation, CFU: colony forming units, w/w%: weight by weight percent, mg: milligrams, g: grams, ug: micrograms, mL: milliliters, ND: not detected, <LOQ: below limit of quantitation, NMT: no more than, **NLT**: no less than, **UHPLC**: ultra-high performance liquid chromatography, **GC**: gas chromatography, **DAD**: diode array detection/detector, MS: mass spectroscopy/spectrometer, ICP: inductively coupled plasma, ISO: International Organization for Standardization, **USP:** United States Pharmacopeia

AyKratom.org

Authorization

This report has been authorized for release from Cora Science by:

Signature:

Position:

Laboratory Director

Department:

Management

Name:

Tyler West

Date:

17JUL2025

AyKratom.org

TestMyKratom.org

TestMyKratom.org

TestMyKratom.org

Kratom.org

TestMyKratom.org

TestMyKratom.org